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Metallic cluster growth within a reactive polymer matrix is modeled by augmenting
coagulation equations to include the influence of side reactions of metal atoms
with the polymer matrix:

where A > 0 and where ck denotes the concentration of the k th cluster and p
denotes the concentration of reactive sites available within the polymer matrix
for reaction with metallic atoms. The initial conditions are required to be non-
negative and satisfy XJL \ j i ' j ( 0 ) = 1 and p(0) = p0. We assume that Rjk =
[dj"k" + (j + k)(j" + k")]/((l + j + k) for 0 < a < l , which encompasses both
bond linking kernels (RJk = j*k") and surface reaction kernels (RJlt = j* + k").
Our analytical and numerical results indicate that the side reactions delay gela-
tion in some cases and inhibit gelation in others. We provide numerical evidence
that gelation occurs for the classical coagulation equations |/i = 0) with the
bond linking kernel (d -> cc ) for 1/2 <a ^ 1. We examine the relative fraction of
metal atoms, which coagulate compared to those which interact with the
polymer matrix, and demonstrate in particular a linear dependence on A ' in
the limiting case RJk = jk, Po=1.

KEY WORDS: Gelation; coagulation equations; cluster growth; infinite-
dimensional dynamical systems; metallic clusters in a polymer matrix;
Smoluchowski equations with side reactions.



where the first term represent the rate of change of the concentration of the
./-clusters due to the coalescence of smaller clusters. The second term repre-
sent the change due to coalescence of the j-cluster with other clusters.

In this work we consider a certain physical and chemical process
which occurs in the preparation of metal-polymer composites This process
consists of the synthesis of metal-polymer composites in which microscopic
metal or metal oxide particles are incorporated by the in-situ thermal or
photolitic decomposition of solid solutions of organometallic complexes
followed by phase separation in the polymer matrices. Examples for this
type of process are the decomposition of iron carbonyls or the decomposi-
tion and oxidation of cobalt carbonyls complexes within a polymer
matrix.(9,10) The process considered in this work is the thermal decomposi-
tion of cobalt carbonyl complexes in a polystyrene matrix under inert
atmosphere conditions (N2), which, in the absence of oxygen, prevents the
oxidation of the cobalt and affords the formation of zero-valent cobalt
clusters homogeneously embedded in the polystyrene matrix. The zero-
valent nature of these particles is associated with the "clean" chemistry of
pristine metal atoms or metal surfaces, as opposed to the "dirty" chemistry
which is the result of various other oxidation states of the metal, a situation
which is avoided in our system by conducting the experiments under an
inert atmosphere (N2).
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1. INTRODUCTION

Many processes in astrophysics, atmospheric physics, biology, colloidal
chemistry, polymer science and the kinetics of phase transitions in binary
alloys can be studied by means of cluster growth models. (1-8) In these
models the system under consideration is viewed as consisting of a large
number of clusters: A1 A2,..., where Ak is assumed to consist of k particles
Al which may be atoms, molecules, cells, etc., depending on the
phenomenon which is to be described. Clusters can coagulate to form
larger ones according to the reaction

where Rjk is the reaction constant, also called the coefficient of coagulation
or kernel, which satisfies RJk = RkJ ^ 0. These reactions are assumed to be
irreversible. We denote by C j ( t ) ^ 0 , j = 1,2,..., the expected number of
clusters consisting of j particles per unit volume. The coagulation equations
are:



where x = 2, 4 or 6 and y = 8, 12 or 16. In the main reaction, the Co(0)
m

m^2 clusters are formed from smaller ones. The Co-Polystyrene com-
plexes formed during this process are not byproducts of the main reaction,
but rather a parallel reaction which competes with the main coagulation
reaction. The extent of the secondary reaction depends on the reactivity of
the cobalt precursor (Cox(CO)y) and the interaction parameter between
the reactive cobalt species and the polystyrene molecules. These reactive,
electron-deficient cobalt species are formed by the decomposition of the
cobalt precursor due to the loss of one or more carbonyl ligands(11) (see
pages 1054-1064 and pertinent references therein). Therefore, the rate of
the main coagulation reaction will be dependent not only on the concentra-
tion of the cobalt precursor and rate coefficient of the coagulation reaction,
but also on the concentration of the polystyrene in the system, or more
specifically, the concentration of the reactive sites on the polymer capable
of interacting with the cobalt precursor fragments, and the interaction
parameter between the polymers and the metal species.

The reaction proceeds via several intermediates, however, the rate
limiting step is the initial loss of a carbonyl group, which creates electron-
deficient species, and therefore, the overall reaction may be approximated
as a first order reaction. The electron-deficient species formed during the
course of the decomposition are very reactive, and are capable of inter-
acting very strongly with the polymeric matrix. Therefore, there are two
major pathways for chemical reactions available for these metallic species:

(a) reactive electron-deficient species can aggregate to form clusters:
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The overall chemical reaction is

where j, k=1, 2,... and j + k is m in (2),

(b) reactive electron-deficient species can attach to the polystyrene
matrix:

where j= 1, 2,....

The stoichiometric details of the latter reaction are not yet elucidated.
However, for the model considered in this paper we assumed that only
single Co atoms ( j = 1 ) react with the polystyrene and the attachment of
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these species to the polymeric matrix is considered as irreversible, and
hence, each particle which is involved in this interaction will be excluded
from further reaction with other particles. Moreover, the chemical bonding
between these particles and the polymer reduces the reactive sites on the
polymer and hence, limits the extent of the particle-polymer pathway. It is
important to stress that the overall chemistry of the system is dependent on
the relative importance and contribution of both pathways.

In order to translate the physical system into mathematical terms, we
define cj as the concentration of clusters of size j of Co. The actual realistic
initial conditions (as implied by the physical situation), is some initial non-
zero distribution of clusters of small sizes and not just the monodisperse
case. However, for simplicity, it is useful to consider the monodisperse case.

In order to model this process we add an additional term to the first
equation in the system (1), which describes the loss of single particles due
to reaction with the polymer walls, and then couple the resultant system
with an equation modeling the decrease of the number of reactive sites per
unit volume, p(t), in the polymer walls available for the reaction with the
metal species. Denoting the coefficient of reaction between the metal species
and the polymer by A, the following system of nonlinear differential equa-
tions is obtained:

for t>0, j=1, 2,..., with initial conditions: Cj(0) = S1j, p ( 0 ) = p0, or more
generally, for arbitrary non-negative initial conditions satisfying
Z,T-iJCj(W = 1 and/HO) = P0.

In order to complete the mathematical description of the physical
system under study we need to specify the form of the coefficients of
coagulation RJk. In the model describing the process of preparation of
metal-polymer composites, the basic unit-clusters are atoms (metallic
atoms). When two atoms react, they join together by means of an
atom-atom bond. On the other hand when two large clusters join together,
it is plausible to assume that they come into contact by a surface-reaction
link instead of by a simple bond between two atoms of the cluster. As a
consequence, we must take into account both behaviors in order to con-
struct the appropriate reaction rate constants which describe the whole
process. The simplest coagulation kernels related to our problem which
occur in the literature are: RJk = jV, 0 ̂  a < 1,(4,1,12-16) and Rjk = j* + k",
0^<x< l.(4,15) We note that for the additive kernel the rate of large-large
and large-small interactions are of the same order of magnitude. This



kernel describes processes in which the dominant mechanism is that of
surface reaction. For the multiplicative kernel large-large interactions are
of higher order of magnitude than large-small interactions. It applies to
situations in which bond linking is the dominant mechanism. With this in
mind, the form of the kernel which we propose to be appropriate to
describe the coagulation process of metallic atoms is given by:

where 0 ^ a < 1, and where d is a parameter indicating the mean-cluster
size at which there is a changeover in the mechanism of coagulation.
Clearly, (4) reduces to RJk= jV when d^> oo and to Rjk = ja + ka when
d=0, however (4) is no longer a homogeneous function of j and k. For
0 ^ < x < 1, the kernel (4) is a particular case of the more general kernel

where

Assuming that r = inf^.^, rk^0, it is easy to check that kernels of type (5)
satisfy
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In our discussions only non-negative solutions will be considered. For
kernels of type (5)-(6) and i ^0, the existence of a continuously differen-
tiate solution for arbitrary nonnegative initial conditions satisfying
Zr=i^c*(°)=1 was established by Rotstein,(7) extending the results of
Tschudi and Leyvraz(13) for A = 0. The kernel /?^<;"Jt*, O ^ a ^ i , is
included in this case. When 0<a^ and /l = 0, Ball and Carr(8)

demonstrated that the solution is unique for all non-negative initial condi-
tions. For RJk = jk and A = 0. McLeod(14) proved that the solution is
unique for all te [0, r], where T < 1 . For Rjk ^ j" + A:", 0^a«S 1, and /l = 0,
White(18) showed that there exists at least one non-negative solution and
that all the moments Mn(t) = Z*°=i ^%(t) are bounded on bounded inter-
vals. For kernels Rjk^(j + k) and A = 0. Ball and Carr(8) established the



existence of a solution for all t. They also proved that this solution is con-
tinuously differentiable.

Exact solutions for (3) with A = 0 and monodisperse initial conditions
are known for some very particular and simple kernels. For Rjk — const,
which corresponds to a = 0 and either d=0 or d-> oo in (4), the solution
was given by Smoluchowski.(1,12,5) For Rjk= 1 the solution is

We will refer to this case as the Smoluchowski case. For Rjk = jk, which we
will refer to as the prototype case and corresponds to a = 1 and d -» oo in
(4), the solution given by McLeod(14) for t ^ 1 and extended by Leyvraz
and Tschudi(13) for all t ^ 0 is

Calculating the total mass of the system from (9), yields

The failure of mass-conservation at t = 1 is interpreted in terms of the for-
mation of an infinite cluster or gel. More precisely, generalizing the analysis
of White(18) and Hendriks et al.,(15) let us define for w^0 and for t^0 the
momenta and the partial momenta or L-momenta:
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It can be seen from (3), multiplying the first equation by jw, summing and
rearranging terms, that M W , L ( t ) satisfy the differential equation:
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and hence

If there exists a time 0^tc< oc such that M 1 ( t ) — p(t) = 0 for all t ^tc, and
M,(t) — P(t) <0 otherwise, we say that gelation has occurred and we call
tc the gelation time. It follows that M 1 ( t ) - P ( t ) = 1 — p0 for all t ^ tc and
M1 (t) — p( t) < 1 — po otherwise.

To gain intuition into the behavior predicted by these equations, we
examine first what is known to happens in the absence of side reactions
U = 0). From (10) note that for the prototype case and /i =0, gelation
occurs at t c=1. It is possible to arrive at a similar conclusion by looking
at the second moment M2(t), which represents the mean cluster size of the
system. Occurrence of gelation at t — tc implies failure of condition (12) for
w= 1, which in turns implies, for Rjk = jk, that £j*l, k2ck diverges at t = tc.
Thus divergence of M2(t) gives an indication that gelation may have
occurred, and convergence of M2(t) indicates that gelation has not
occurred. Looking at (13 ) one sees that prior to gelation
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If

then

Otherwise, from ( 1 1 )

Let us now look at equation ( 1 3 ) with w= 1. For all t for which condition
(12) is satisfied we have



which vanishes at t0 = 2, indicating not that the total number of clusters
vanishes within a finite time, but that the moment equation with M t ( t ) = 1
is no longer valid for t>tc, for some tc<2. Even though for this case the
bound does not provide better information, it exemplifies a different way of
determining occurrence of gelation; i.e., the vanishing of M0(t) within a
finite time t0 indicates that gelation has occurred prior to t0.(4,15) For more
general kernels, the relation between the divergence of the second moment
and occurrence of gelation has not been proved. However heuristic
arguments in favour of the absence of singular points other than tc for the
model RJk = jk and A = 0 lead to Hendriks et al.(15) to conjecture that for
more general kernels, divergence of some moment at tc indicates that gela-
tion occurs at that point.

For A = 0 and Rjk = \l>(j,k), where ^ is a homogeneous function of
degree of both variables, j and k; i.e., \l/(sj, sk) = s^if/(j, k), Hendriks, Ernst
and Ziff(15) addressed the question of occurrence of gelation and where
appropriate, gave bounds on gelation time. Their results for RJk = j"k*
yield gelation for a > 1 and exclude gelation for a < 5, in concurrence with
the results of Leyvraz and Tschudi.(16) For ^ < a ^ 1 the criteria are incon-
clusive, although for a= 1 the exact solution (9) exhibits gelation at tc= 1.
For the interval |<c t< l , the question of occurrence of gelation is still
open. However, there is evidence indicating that gelation occurs.(16) For
/I = 0 and RJk ^ j" + Ara, 0 s£ a ^ 1, White(18) proved that if ^=, k p c k ( 0 ) is
finite for some p > a, then for any non-negative solution of the coagulation
equations, ^j?=\kpck(t) is bounded on bounded intervals.

An important issue which naturally arises regarding the system (3)
with A > 0 is to determine the effect of side reactions on the coagulation
process, and in particular on the possible appearance of gelation. To our
knowledge this question has not been addressed up to now. More specifi-
cally: are there situations in which the gelation phenomenon is inhibited
as a consequence of side reactions? In Section 2 we show, that for RJk = jk
the gelation time tc is delayed as a consequence of side reactions and for
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hence M2(t) diverges when t = M 2 (0) - 1 . ( 1 5 ) In particular, for monodisperse
initial conditions divergence occurs when t = 1 in accordance with (10).
Another way to determine that gelation has occurred is given via con-
sideration of M0(t). (15) For kernels satisfying (5)-(6) and iv = 0, equation
(13) is valid for all t < oo, since condition (12) is valid for all t < oo. This
follows from (7) and the fact that lim^^ ££=1 kck = M 1 ( t ) < oo for all
t < oo. Looking at (13) with Rjk = jk, w = 0, and 1 = 0, since prior to gela-
tion M1(t) = 1, one sees that up to gelation time,



kernels of type (5), or more generals kernels Rjk satisfying (j>(j, k)^RJk^
\l/(j, k), where <f>(j, k) and \l>(j, k) are homogeneous functions of y and k the
upper bounds on tc are increased. We also study the influence of the
parameter d in kernels of type (4) on the occurrence of gelation and on
gelation time, finding, for monodisperse initial conditions that for the case
0 < d < cc, there is no gelation for 0 ^ <x ̂  1/2 and there is gelation for a > 1.
In Section 3, we develop a numerical test, which we call a peaks test, based
on the convergence of the sequence of maxima, or peaks, of the numerical
solutions for a sequence of finite systems which approach (3), to the peaks
of the infinite system. With the aid of this test we can conjecture whether
or not gelation occurs and, for the cases in which gelation indeed occurs,
we obtain numerical upper bounds on gelation time. In particular we
obtain numerical evidence of the occurrence of gelation for RJk = jaka,
1/2 « a < l, where the analytical tests were inconclusive. For more general
kernels; i.e., kernels of type (4) with d « oo we obtain numerical evidence
supporting the existence of a parameter ad, j^a^ 1 which increases as d
decreases such that for y^ad gelation does not occur and for a>a d gela-
tion occurs. We also analyze the influence of side reactions on the
occurrence of gelation finding that an increase in the value of I can inhibit
gelation for certain values of a.

With regard to the system (3), another important feature to clarify is to
determine the fraction of the initial monomer concentration which eventually
becomes incorporated into the metallic clusters as compared with the frac-
tion which undergoes reaction with the polymer matrix. In Section 4, using
numerical solutions, we present graphs illustrating the competition between
the processes of coagulation and side-reaction for various values of A and a,
and for p0= 1 and d-* oo. Furthermore we derive an analytical expression
for the concentration of monomers that coagulate as a function of the con-
centration of monomers that attach to the polymer for the model Rjk = jk
which demonstrates linear dependence on A"1 in the limiting case p0= 1.

2. ANALYSIS OF GELATION FOR THE MODEL WITH
CLUSTER-WALL INTERACTIONS

In this section we study analytically the effect both of the side reac-
tions and of the kernels satisfying (7) on the occurrence of gelation and
gelation time by adapting the methods of ref. 15 (Section 5.1). We first
address the influence of side reaction on gelation time and on the
occurrence of gelation for the model RJk = ^ ( j , k ) where >fr(j,k) is a
homogeneous function of both j and k for the case A > 0, next we study the
particular case R]k = jk, and finally we treat the question of whether or not
gelation occurs for kernels satisfying (7). Such kernels need not be
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homogeneous functions either of j or of k. For models other than the
prototype case it is difficult to solve the moment equations explicitly, but
it is still possible to obtain bounds on the momenta which provide criteria
for the occurrence of gelation and bounds on the gelation time. We con-
struct upper and lower bounds for M2(t) and upper bounds for M0(t)
analyzing them with the help of the following criteria which were discussed
in the introduction:

1. the divergence of a lower bound for M2(t) at a finite time t = t2

indicates that gelation may have occurred at some time tc^t2,

2. the divergence of an upper bound for M2(t) at t = t1 shows that if
gelation occurs at t = tc, then t c ^ t 1 ,

3. if an upper bound for M0(t) reaches zero at t0 gelation has
occurred at tc^t0.

Information on the influence of the side reactions on gelation time for
homogeneous kernels is contained in the lemmas 2.1 and 2.2 below.

Lemma 2.1. If RJk = ^ ( j , k] where ^(sj, sk) = sft\j/(j, k), and ft > 0,

(1) if \j/(j, k) is convex and ft > 2, then gelation occurs and
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(2) if \j/(j, k) is concave and B < 1, then gelation does not occur.

Remark. Let us look at the monodisperse initial conditions case. For
the kernel RJk = jxka; this lemma indicates that gelation occurs if a > 1 with
tc < (1 — p 0 ) 1 - 2 a / 2a — 1, and that gelation does not occur if a ^ 1/2.

— For the kernel Rjk = jaka with 1/2<a< 1, the lemma is inconclusive,
although for a = 1 we will show in Lemma 2.2 that gelation indeed occurs.

— In the absence of side reactions, the lemma is correct with p0 = 0
(see ref. 15).

— Note that the effect of side reactions is to increase the bounds on
gelation time.

Proof. (1) Let us look at Eq. (13) with w = 2 and apply Jensen's
inequality(19) to both variables of the convex function >//(_j, k):
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From (13) with w = l , M 1 ( t ) is a decreasing function of t. Since, by
assumption B > 2,

and thus

Solving this differential inequality:

At t = t1 the lower bound for M2(t) diverges, thus according to criterion 1,
* c < t 1 .

(2) From Eq. (13) with w = 2,

From (13) with w=1, M1(t) is a decreasing function of t. Since, by
assumption, B< 1,

and since p(t) is also a decreasing function of t we obtain

Solving this differential inequality and rearranging terms

This upper bound for M2(t) does not diverge for all t^0, so M2(t) is
always finite and gelation does not occur. This proves the second part of
the lemma.
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Remarks. By looking at equation (13) with ij/(j, k) convex B > 2 and
w = 0, and applying similar arguments to M0(t) we have

At t = t 0 / (1 — p0)B the upper bound for M0(t) vanishes, so according to
criterion 3 gelation occurs and tc<t0. This bound is not better than the
previous one, but corresponds to a more conclusive criterion.

— Examining Eq. (13) with \l/(j, k) concave, B< 1 and w = 0 we con-
clude similarly that there exists a lower bound for M0(t) which does not
vanish for all t ^ 0, in support of the conclusion of part 2 of the lemma.

Lemma 2.2. If Rjk = jk and A > 0 , then gelation occurs, and

Remarks. For monodisperse initial conditions the above bounds may
be written as

— Comparing with the case A = 0 where tc = M2
 -1(0) (15), treated in

ref. 15, we see that as a consequence of the side reactions, tc increases while
remaining finite as a consequence of the side reactions.

Proof. It is easy to check from Eq. (13) with w = 2 and rk — k that,

Hence

Thus by criterion 2, if gelation occurs then t c >M 2
- 1 (0) .

Similarly from Eq. (13) with w = 0 and rk = k,



(2) if \l/(j, k) is concave and y< 1 then gelation does not occur.

Remark. For kernels satisfying (4) with 0<d<cc for a < 5 gelation
does not occur and for a > 1 gelation occurs with

Gelation and Cluster Growth with Cluster-Wall Interactions 131

Prior to gelation M 1 ( t )= 1 — Po + P ( t ) > hence (16) becomes

thus

Solving this differential inequality we obtain

Hence M0(t) vanishes by time t0, where

Thus, according to criterion 3,

In terms of the influence of the coefficients of coagulation on the gela-
tion time, we have the following

Lemma 2.3. If X = 0 and

where (j>(j, k) and ij/(j, k) satisfy

(1) if (/>(j, k) is convex and B > 1 then gelation occurs, and

just as it does for the kernel Rjk = jxk'1 corresponding to rf-» oo.
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The proof follows closely the arguments employed in Section 5.1 of
ref. 15 replacing equality by inequality where appropriate (see ref. 17 for
details). Similarly, it is possible to obtain

At t = t0 this upper bound for M0(t) vanishes, so according to criterion 3
gelation occurs and tc < t0. From Eq. (13) with w — 0, it is easy to conclude
the existence of a lower bound for M0(t) which does not vanish for all
t^0.

3. PEAKS TEST FOR GELATION

In this section we present numerical results related to gelation which
complement the analytical results presented in Section 2. The main dif-
ficulty facing numerical treatment of system (3) is that the system of dif-
ferential equations is infinite. An associated finite system of coagulation
equations with side reactions in which coagulation is allowed up to the
TV-cluster is

In Rotstein(17) it was shown that for kernels of type (5)-(6) the solutions
of the sequence of finite systems approach the solution of the infinite
system; i.e., there exist a subsequence Ni -» oo of natural numbers such that
limNi-oo,C j ,N i(t) = Cj(t) and limNi->oopN(t) = p(t), uniformly on [0,T],
0 < T < oo, for j=1,2,..., where { {C j }

o o
j = 1 , p(t)} is a solution of (3) and

{ { C J , N } o o
j = 1 , P N ( t ) } are solutions of (17). Assuming the solution of (3) to be

unique, implies that the subsequence Ni -» oo can be taken to be the set of
natural numbers itself; i.e.,

The essential behavior of (17) is different from that of (3) because for (17)
gelation does not occur since M 1 , N ( t ) - p N ( t ) = 0 for all t<oo and for
all N. The material released as a consequence of the coagulation process is
absorbed by the N-cluster since, by (17), c N , N ( t ) is an increasing function
of time which in the limit N -> oo may be interpreted as corresponding to
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the gel concentration. However, the convergence of subsequences enables
us to look at a sequence of solutions of problems of type (17 ) and infer
from them possible behavior of the solutions of (3) .

3.1. The Structure of the Solutions of the Infinite
Systems, Existence of Peaks, and Relation
Between Peaks and Gelation Time

Let us first consider the kernels RJk = 1 and Rik = jk for / = 0 with
monodisperse initial conditions, for which exact results are known. For the
case Rj/c = 1, from the solution given in (8), clearly for each k, c k ( t ) reach
its maximum at tk = k — 1, and tk -» cc as k -» oc. For the prototype case,
from (9) we observe that for each k, ck(t) reaches its maximum at
tk = k-\/k. We observe that the sequence {tk}'k = 1 is monotonically
increasing and convergent: limk->oo t k=1. These remarks, together with
numerical solutions for the kernels Rjk = jaka, 0 ̂  a ^ 1 and kernels of type
(4) (see Fig. 1), lead us to the following.

Conjecture 3.1. Let {{ck(t)}^}, p(t)} be a solution of the
infinite system (3) for monodisperse initial conditions. Then for each k
there exist a tk ^ 0 such that

Fig. 1. Cluster solutions cj(t) for j= 2, 3, 4, 5 and 6 lor Rjt = jk, / = 0 and N= 100.



Moreover, the sequence {tk}
oo

k=1 is monotonically increasing.

We call each of the elements tk of this sequence a peak for the corre-
sponding solution ck(t). The following lemma provides us a tool for finding
numerical bounds on gelation time, given a sequence of peaks correspond-
ing to solutions { { C j } o o

j = 1 , p(t)} of (3).

Lemma 3.1. Let us assume that conjecture 3.1 is true. If t0 =
limk->oo tk exists, then tc ^ t0 where tc is the gelation time.

Proof. By reductio ad absurdum let us assume that tc>t0. For all
t> t0, by Conjecture 3.1 and since t> tk for all k

On the other hand, for all t < t c ,

From (18), for all t>t0

In particular if tc>t0 one obtains £*°=i kck(tc) < 1, in contradiction to
(19). Therefore tc^t0.

3.2. Analysis of Gelation

We now employ the above remarks and results, restricting ourselves to
values of 0 ̂  a ^ 1 and monodisperse initial conditions. From the general
existence theorem,(17) the uniqueness assumptions and Conjecture 3.1, it
follows that for every k there exists a sequence {tk , N}oo

k=1 of peaks, such
that limN->oo t k , N =t k , where tk is the peak for the kth component of c k ( t ) ,
the solutions of (3) for monodisperse initial conditions. We may now find
an approximation on the bounds for the gelation time for infinite systems
by looking at the peaks for numerical solutions for sequences of finite
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systems. This approach was carried out by using the Modified Euler
Method with a step size h = 0.01 to calculate numerical solutions for
systems of equations of type (17) with various kernels and values of A
and p0, and for N= 3, 5, 10, 50 and 100. For each set of calculations the
sequence of peaks was compiled in tables for various values of k and N,
with entries t k , 3 , t k , 5 , t k , 1 0 , t k , 5 0 and tk ,100. Looking at these tables we
examine the convergence of { t k } o o

k = 1 and seek bounds on t0. In Tables I-II
we reproduce the results for the Smoluchowski and prototype cases respec-
tively. In the case N=100 only the first 50 peaks are given. The complete
tables as well as the tables for other cases can be found in ref. 17. For the
Smoluchowski case the sequence { t k , N ) o o

k = 1 should satisfy limN->oo tk , N =
k — 1 and for the prototype case the sequence { t k , N}oo

k=1 should satisfy
limN->oo t k , N = ( k — 1)/k. Looking at Tables I-II we observe that for each
k the values of tk ,N decrease and appear to tend towards k — 1 and
(k — 1)/k respectively as N increases. This behaviour was corroborated for
the prototype case making calculations for N up to 1000. As we know,
c N , N ( t ) is an increasing function of time for each N, which in the limit
N-> oo we interprete as corresponding to the gel concentration. For this
reason we observe in Tables I-II that tN , N= 50.00 for each N, the maxi-
mum time of calculation. The fact that tk, N = 50.00 in Table I is to be inter-
preted as tk occurring at a time t which is beyond the range of calculation.
Looking at Tables I and II we can differentiate between two different
behaviors of the peaks. For the Smoluchowski case the peaks tend to con-
verge to an unbounded sequence. This behavior also appears in the
numerical simulations for other kernels where gelation is not expected to
occur and we consider it as characteristic for systems in which gelation
does not occur. Moreover in ref. 17 we have observed that as a decreases
the peaks are more spread out for a fixed value of N. For the prototype
case we see that the sequence {tN-1,N}, N=3,5, 10, 50 and 100, is given
by

0.89, 1.81, 2.16, 1.59, 1.41

where the last value was taken from Table 7.3 in ref. 17, increases initially,
then decreases. We shall refer to this sequence as the bounding sequence for
the problem. We also made calculations for N = 200, 300, 400 and 500
obtaining t199,200 = 1.29, t299,300= 1.24, t399,400= 1.20 and t499,500= 1.18. We
assume that once the sequence starts to decrease it continues to decrease.
Thus, for the prototype case the peaks are concentrated in a bounded inter-
val of time implying that once the bounding sequence starts to decrease,
each t N - 1 , N gives an upper bound on the gelation time. We consider this
behaviour as being a positive indication of the occurrence of gelation. We
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Table I. Peak Times for N-Dimensional Finite Systems for Rjk= 1
Various Values of N and A=0

k

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

N = 3

0.00
1.51

50.00

N=5

0.00
1.03
2.64

13.07
50.00

N=10

0.00
1.00
2.01
3.12
4.53
6.80

11.91
50.00
50.00
50.00

N=50

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.01
11.01
12.03
13.06
14.10
15.16
16.26
17.39
18.57
19.80
21.11
22.50
24.00
25.63
27.42
29.41
31.63
34.16
37.07
40.48
44.54
49.52
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00

N=100

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.01
21.01
22.02
23.03
24.04
25.06
26.09
27.12
28.16
29.20
30.26
31.34
32.43
33.53
34.66
35.80
36.97
38.17
39.39
40.65
41.95
43.28
44.66
46.09
47.57
49.12
50.00
50.00
50.00
50.00

k-\

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
41.00
42.00
43.00
44.00
45.00
46.00
47.00
48.00
49.00
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Table II. Peak Times for N-Dimensional Finite Systems for Rjk = jk
Various Values of N and A=0

k

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

N=3

0.00
0.89

50.00

N = 5

0.00
0.57
1.02
1.81

50.00

N=10

0.00
0.51
0.72
0.88
1.04
1.22
1.43
1.71
2.16

50.00

N = 50

0.00
0.50
0.67
0.75
0.81
0.84
0.88
0.90
0.92
0.94
0.98
0.98
0.99

1.01
1.02
1.04
1.05
1.07
1.08
1.10
1.11
1.12
1.14
1.15
1.17
1.18
1.19
1.21
1.22
1.24
1.25
1.26
1.28
1.29
1.31
1.32
1.33
1.35
1.36
1.38
1.39
1.41
1.43
1.44
1.48
1.48
1.50
1.53
1.59

50.00

N=100

0.00
0.50
0.67
0.75
0.80
0.84
0.86
0.88
0.90
0.91
0.93
0.93
0.94
0.95
0.96
0.97
0.98
0.98
0.99

1.00
1.00
1.01
1.01
1.02
1.03
1.03
1.04
1.04
1.05
1.05
1.06
1.07
1.07
1.07
1.08
1.08
1.09
1.09
1.10
1.10
1.11
1 . 1 1
1.12
1.12
1.13
1.13
1.13
1.14
1.14
1.15

( k - 1 ) / k

0.00
0.50
0.67
0.75
0.80
0.83
0.86
0.88
0.89
0.90
0.91
0.92
0.92
0.93
0.93
0.94
0.94
0.94
0.95
0.95
0.95
0.95
0.96
0.96
0.96
0.96
0.96
0.96
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98



find a third kind of behavior which is intermediate; i.e., the peaks do not
increase beyond the calculation time (50.00), but the bounding sequence is
still increasing even for N= 150, 200, and 250. In those cases we can not
conclude anything about occurrence or non-occurrence of gelation. This
considerations are employed to interprete numerical calculations which
where made for some characteristic cases which we summarize next.

3.3. Influence of the Coefficients of Coagulation
on Occurrence of Gelation

We analyze now the influence of kernels of type (1) on gelation time
without side reactions. From the results of Hendriks et al.(15) and those of
Section 2 we know that for kernels of type (1) with d> 0, gelation does not
occur for 0<<a<1/2, for the limiting case d-> oo and a = 1 we also know
from (9) that gelation occurs and tc= 1, and for the limiting case d = 0 we
know that gelation does not occur for all 0 < a < 1. The question is still
open regarding the cases 0<d<oo,1/2«a< 1 and d-> oo, 1/2«a< 1. For the
latter case it has been conjectured that gelation occurs in this interval of
a.(16,20) We expect the existence of a parameter ad, 1 / 2 < a d ^ l which
increases as d decreases such that for all a ^ ad gelation does not occur and
for all a>ad gelation occurs.

The results for various values of of and a are displayed in Table III. We
can see there that for all d considered and a < 1/2 there is no gelation, which

Table I I I . Analysis of Gelation for the Kernel
Rjk=[djaka+(j+k)(j" + ka)]/(d+j+k) for Various Values

of a and d and for A = 0a

a

1.0
0.9
0.8
0.75
0.7
0.6
0.55
0.5
0.45
0.0

d=oo

1.41

3.71

9.58
14.43
25.47

—

d=200

1.53

5.83
7

—

d= 100

1.64

3.75
7
7
9

—

d=50

1.81
2.70

?
7
9

—

—

d = 20

2.22
7
7

—

d=2

—

—

d = 0

—

—

a The numbers indicate the bounds on gelation time when gelation occurs, the dashes
indicates that gelation does not occur and the question marks indicates that we can not
decide about occurrence of gelation.
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is in accordance with the analytical results with the exception of the results
for the prototype case for a = 5, which are in contradiction to Lemma 2.1.
This may be a result of the difference between the analytical method which
is based on a conjecture regarding the second moment of the system, and
the peaks-test; or it may be the result of a very small error in the numerical
method. Since it has been conjectured to be in the borderline case between
the occurrence and non-occurrence of gelation, our calculations may be
very sensitive to very small numerical errors. For this reason we also made
calculations for a = 0.45 obtaining that there is no gelation. We also see
that for d = 0 there is no gelation for all a tested in accordance with the
analytical results. For the prototype case and 1/2 ̂  a < 1 we obtain numerical
evidence of occurrence of gelation confirming what has been conjectured.
For the remaining cases we see that as d decreases, the interval ( a d , 1) of
occurrence of gelation becomes smaller, confirming our conjecture.

3.4. Influence of Side Reactions on Occurrence of Gelation

We analyze now the influence of the parameters k and p0 on occur-
rence of gelation for the case Rjk = jak*. From the results of Section 2 we
know that for A ^ 0, gelation does not occur for 0 ̂  a < 1/2 and that gelation
occurs for a = 1. For this last value of a we know that when side reactions
are not allowed, gelation occurs at tc = 1 and it is delayed as a consequence
of the side reactions. The question is still open regarding the cases 1/2 < a < 1.
For this interval and A = 0 we showed in the former subsection that gela-
tion indeed occurs. We expect, as in the case a= 1, that the gelation time
should be delayed as a consequence of side reactions. A natural question

Table IV. Numerical Bounds on the Gelation Time for RJk=jak° for Various
Values of a, A, and p0

 a

a

1.0
0.9
0.8
0.7
0.6
0.5

A = 0.1,
P0 = 0.1

1.41

10.30
—

A = 0.1,
P0 = 0.5

1.44

')

—

A=0.5,
P0 = 0.5

1.54

?

—

/= 1.0,
P0=1.0

?

—

/= 10.1,
P0=1.0

')

—
—

/ = 20.0,
p0=1.0

?
?

—
—

/= 100.0,
p0=1.0

_
—

—
—

a The numbers indicate the bounds on gelation time when gelation occurs, the dashes
indicates that gelation does not occur and the question marks indicates that we can not
decide about occurrence of gelation.
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which arises is whether an increase in A can inhibit gelation for certain
values of a. The results for various values of A, p0 and a are displayed in
Table IV. We can see numerical evidence supporting an affirmative answer
to this question.

4. CLUSTER-POLYMER COMPETITION

A physically relevant issue regarding systems of type (3) is to evaluate
the relative competition between the two processes: coagulation of metallic
clusters and side-reaction of the metallic atoms with the polymer walls. To
this end, we analyze graphs of M 1 ( t ) — C 1 ( t ) = Y.JL2Jcj(t)> the mass of the
non-monomer clusters, versus p0 — p ( t ) , the concentration of reactive sites
which are no longer available for reaction. We expect the slope of these
graphs to increase as A increases since the tendency of the monomers to
react with the walls increases with increasing A. We also expect the slope
of these graphs to decrease with increasing <x since the tendency of the
monomers to coagulate increases with increasing a. To address this ques-
tion we calculated A f l t N ( t ) — c l i N ( t ) = ̂ =2jcJtN(t) and p0-pN(t) using
the Modified Euler Method with a step size h = 0.001 and for 1000 itera-
tions, and put them in graphs of M1,N — c1,N (concentration of atoms
which coagulate) versus p0—pN (concentration of atoms which react with
the polymer walls), for N = 3, 5, 10, 50 and 100, for kernels of type (4) with
d-> oo(R j k = j"k'1), for various values of a and A and for p0 = 1. In each
graph (Figs. 2-3) there are three groups of solutions, which in order of
decreasing slope correspond to A = 0.1, A = 1 and X = 10. In each group
there are five solutions (though we cannot distinguish between them fully
in the graphs), which correspond to N = 3 to N = 100. Figure 2 correspond
to the multiplicative kernel with a = 1 and p0 = 1 and Fig. 3, correspond to
the multiplicative kernel with a = 0 and p0=1. Looking at the graphs, we
can infer from the sequence of finite solutions, the expected limiting
behavior of the infinite system. We observe that for a = 1 the curves
approaches a straight line with slope A-1 as it is demonstrated below
analytically. For a = 0 we see that for early values of time the curves are
similar to the corresponding ones for a = l . This can be explained as
follows. At the beginning of the process the loss of metallic atoms by
coagulation is mainly due to reaction between single atoms, and R1,1 = 1
for both cases. Later on in time the difference in slope can be seen as
predicted. This gives us an experimental tool for estimating A without com-
plete information about the coagulation process.

As a comparative analytical example, we analyze the model (3) with
Rjk = jk and monodisperse initial conditions. Let us consider the first and
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and from (14), M1 = p+ 1 — p0. Substracting the second equation in (20)
from the first one and solving the resulting system we obtain

This is an expression for the concentration of monomers which have
coagulated as a function of the fraction of the concentration of the reactive
sites at time t with respect to the initial concentration of reactive sites with
X as a parameter. Differentiating with respect to p0 — p we obtain

Fig. 2. Cluster coagulation vs. side-reaction competition for Rjk = j*k*, a= 1, p0= 1, A = 0.1,
1 and 10 respectively in order of decreasing slope.

last equations in (3) and Eq. (13) with w = 1. Prior to gelation we have the
following system
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Fig. 3. Cluster coagulation vs. side-reaction competition for Rjk = jaka , a = 0, p0= 1, l = 0.1,
1 and 10 respectively in order of decreasing slope.
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